Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund

Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 03

Lecture — 04
Arrays vs. Lists, Binary search

(Refer Slide Time: 00:02)

Seqguences of values

+ Two basic ways of storing a sequence of values
* Arrays
» Lists

» What'’s the difference?

We have seen several situations where we want to store a Sequence of values. Now it
turns out that in a program or in a programming language implementation, there are two
basic ways in which we can store such a sequence. These are normally called Arrays and

Lists. So, let us look at the difference between Arrays and Lists.

187

(Refer Slide Time: 00:22)

Arrays % *J%’T‘{f

» Single block of memory, elements of uniform type
» Typically size of sequence is fixed in advance

* Indexing is fast
* Access seq[1] in constant time for any 1

* Compute offset from start of memory block

-

Inserting between seq[i] and seq[i+1] is
expensive

» Contraction is expensive

An array 1s usually a sequence which is stored as a single block in memory. So, you can
imagine if you wish that your memory is arranged in certain way and then you have an
array, so usually memories arranged in what are called Words. Word is one unit of what
you can store or retrieve from memory, and an array will usually be one continuous

block without any gaps.

And, in particular this would apply when an array has only a single type of value, so all
the elements in the sequence are either integers or floats or something where the length
of each element of the array is of a uniform size. We would also typically in an array no
in advance how big this block is. So we might know that it has say 100 entry, so we have

a sequence of size 100.

Now when this happens, what happens is that if you want to look at the jth element of a
sequence or the ith element of a sequence, then what you want to think of is this block of
memory starting with 1, 2, 3, up to 1 right and you want to get to the ith element quickly.
But since everything is of a uniform size and you know where this starts, we know where
the sequence starts you can just compute i times this size of one unit and quickly go and

one shot to the location in the memory where the ith element is saved.

188

So, accessing the ith element of an array just requires arithmetic computation of the
address by starting with the initial point of the array and then walking forward 1 units to
the ith position. And this can be done in what we could call Constant time. By constant
time what we mean is it does not really depend on i. It is no easier or no difficult to get
the last element of an array as it is to get to the second element of an array, it is

independent of i. It takes the fixed amount of time to get to sequence of y for any 1.

Now, one consequence of this is inserting or contracting arrays is expensive, because
now if i have an array with 0 to 99 and I want to add a new value here say at position i
then first of all this array now becomes from 0 to 100 and now everything which is after 1
has to be shifted to accommodate space if we want to keep the same representation with
the entire array is stored as a single block. So, when we have a single block of memory
though it is efficient to get to any part of it quickly it is not very efficient to expand it
because we have to then shift everything. The worst case for example, if this green block

comes into Oth position then the entire array has to be shifted down by one position.

In the same way contraction is also expensive because we have to make a hole in some
sense. If we remove this element out then we have a hole here and then we have to push
everything up to block this hole, because — remember the array must have all elements

contiguous that is without any gaps starting from the initial position.

189

(Refer Slide Time: 03:27)

» Values scattered in memory
» Each element points to the next—“linked” list

» Flexible size

o »
* Follow i links to access seq[1i] ?
* Cost proportional to 1 \ 1
5 / 5
*» Inserting or deleting an element is easy
* “Plumbing”

The other way of storing a sequence, is to store it one element at a time and not bother
about how these elements are with respect to each other in the memory. I can think of
this memory as a large space and now I might have one element here, so this is my first
element and then I will have a way of saying that from here the next element is
somewhere else, this is what we call a Link. So very often in the implementation these
are called linked list, so I may have the first element here. Now because of various

reasons | might end up putting the second element here and so on.

You can imagine that if you have some say space in your cupboard and then you take out
things and then you put things back but you put things back in the first place where you
have an empty slot, then the sequence in which you put thinks back may not respect the
sequence in which they appear finally in the shelf. So, here in the same way we do not
have any physical assumption about how these elements are stored, we just have a

logical link from the first element to the next element and so on.

The other part of this is that we do not have to worry about the overall length of the list
because we know we started at the Oth position and we keep walking down. On the last
position so say suppose the last position is in fact two then there would be some

indication here saying that there is no next element, so two is the last element. A list can

190

have a flexible size and obviously because we are just pointing one element to another,
we can also accommodate what we see in Python where each element of the list maybe
of a different type and hence each value might have a different size in itself. It is not
important unlike an array that all the values have exactly the same size because we want
to compute how many values to skip to get to the ith element. Here, we are not skipping

we are just walking down these links.

Since we have to follow these links the only way to find out where the ith element is is to
start from the Oth element and then go to the first element then go to the second element
and so on, because a priori we have no idea where the ith element is. So, after i steps we
will reach the ith element. And if we have a larger value of i it takes longer to get there.
So accessing the ith position in a sequence when the sequence is stored as a list takes
time proportional to i, we cannot assume that we can reach any position in the list in

constant time unlike in an array.

On the other hand it is relatively easy to either insert or delete an element in a list like
this. Supposing, we have a list like this. Suppose, we start at Oth position and may come
to the ith position and currently if we say that the ith position points to the i plus 1th
position which point to the rest, and suppose we want to insert something here, then it is
quite simple we just say that this is the new i plus 1th position. We create a new block in
memory to store this value and then we will make this point here. So, it is like plumbing,
we remove one pipe and we attach a pipe from the ith element to the new element and

attach another pipe to the new element to what was beyond the ith element previously.

We just have to shift these three links around and this does not matter wherever we have
to do it, any place in the list if we have, I have just have to make this local change in
these links. And so this insertion becomes now a constant time operation if we already
are at the position where we want to make the change. In the same way if we want to
delete something that is also easy in fact it is even easier. So, | have say i pointing to i
plus 1 pointing to i plus 2 and I want to remove this element, well then I just make this
link directly point to the next one. Remember all these links are available to us we know

this link we know this link, so we know where i plus second element is.

191

Similarly here, when we want to create a new element we get a link for it because we
create it and we know what link to copy there because we already have it here. So we can
copy it from the ith element to the new element. Therefore, in a list it is expensive to get
to the ith element it takes time proportional to the position we are trying to get to,
however, having got to a position inserting or deleting an element at that position is of
constant time. Unlike in an array, where if we insert or delete at some position we have

to shift a lot of values forwards or back words and that takes time.

(Refer Slide Time: 07:47)

Operations

Let us look at p

typical * Exchange seq[i] and seq[j]

Operations + Constant time in array, linear time in lists
that we * Delete seq[1i] or Insert v after seq[1i]

« Constant time in lists (if we are already at seq[1i])
perform on _ T
* Linear time in array
sequences. So
one typical
operation,

now if 1 just !

represent a sequence more abstractly as sequences we have been drawing it. Supposing, |
want to exchange the values at 1 and j. This would take constant time in an array because
we know that we can get the value at ith position, get the value at the jth position in
constant time independent of 1 and j and then we exchange them it just involves coping

this there and the other one back.

On the other hand in a list I have to first walk down to the ith position and then walk
down to the jth position to get the two positions so I will have in a list I would have the
sequence of links and then I would have another sequence of links. Then having now
identified the block where the ith value is and the block where the jth values then i can of
cause exchange them without actually changing the structure I just copy the values back

and forth, but to find the ith and jth values it takes time proportional to 1 and j, so it takes

192

linear time.

On the other hand as we have already seen, if you want to delete the value at position i or
insert the value after position i this we can do efficiently in a list because we just have to
shift some links around, whereas in an array we have to do some shifting of a large
bunch of values before or after the thing and that requires us to take time proportional to

1.

(Refer Slide Time: 09:12)

Operations

* Exchange seq[1i] and seq[j]

+ Constant time in array, linear time in lists

+ Delete seq[i] or Insert v after seq[1i]
+ Constant time in lists (if we are already at seq[1i])
* Linear time in array

» Algorithms on one data structure may not transfer
to another

* Example: Binary search

The consequence of these differences between the two representations of a sequence as
an array and a list is that we have to be careful to think about how algorithms that we
want to design for sequences apply depending on how the sequence is actually
represented. An algorithm which works efficiently for a list may or may not work
efficiently for an array and vice versa. To illustrate this, let us look at something which

you are probably familiar with at least informally called Binary search.

193

(Refer Slide Time: 09:42)

Search pkoblem

* |s a value v present in a collection seq?
+ Does the structure of seq matter?
* Array vs list
» Does the organization of the information matter?

» Values sorted/unsorted

The problem we are interested in is to find out whether a value v is present in a
collection or we can even call it a sequence to be we more precise in a sequence which
we call seq. So, we have a sequence of values we want to check whether a given value is
there or not. For instance, we might be looking at the list of roll numbers of people who
have been selected for a program you want to check whether our roll number is there or

not.

There are two questions that we want to ask; one is is it important whether the sequence
is maintained as an array or as a list and is it also important given that it is maintained as
an array or a list whether or not there is some additional information we know for
example, it is useful for array to be sorted in ascending order that is all the elements go in
strictly one sequence from beginning to end, lowest to highest, or highest to lowest, or

does it matter, does it not matter at all.

194

